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A B S T R A C T

This study examines the atrophy rates of subjects with mild cognitive impairment (MCI) compared to controls in
four regions within the medial temporal lobe: the transentorhinal cortex (TEC), entorhinal cortex (ERC), hip-
pocampus, and amygdala. These regions were manually segmented and then corrected for undesirable long-
itudinal variability via Large Deformation Diffeomorphic Metric Mapping (LDDMM) based longitudinal diffeo-
morphometry. Diffeomorphometry techniques were used to compare thickness measurements in the TEC with
the ERC. There were more significant changes in thickness atrophy rate in the TEC than medial regions of the
entorhinal cortex. Volume measures were also calculated for all four regions. Classifiers were constructed using
linear discriminant analysis to demonstrate that average thickness and atrophy rate of TEC together was the most
discriminating measure compared to the thickness and volume measures in the areas examined, in differ-
entiating MCI from controls. These findings are consistent with autopsy findings demonstrating that initial
neuronal changes are found in TEC before spreading more medially in the ERC and to other regions in the medial
temporal lobe. These findings suggest that the TEC thickness could serve as a biomarker for Alzheimer's disease
in the prodromal phase of the disease.

1. Background

Current research criteria for a diagnosis of mild cognitive impair-
ment (MCI) or dementia due to Alzheimer's disease (AD) recommend
the use of biomarkers to improve the accuracy of diagnosis. These re-
commendations include the use of imaging biomarkers, but emphasize
the importance of developing additional more sensitive and specific
imaging markers for AD (Albert et al., 2011; McKhann et al., 2010).
Braak's neuropathological staging of AD proposes that accumulation of
pathology first begins in the transentorhinal cortex (TEC) before
spreading along the lamina to the medial regions of the entorhinal

cortex (ERC) and subsequently involves the hippocampus and amygdala
(Braak and Braak, 1991). These findings are supported by other autopsy
studies that indicate that well-characterized subjects in the early phases
of AD demonstrate neuronal loss in selective layers of the ERC and TEC
(Gómez-Isla et al., 1996; Kordower et al., 2001; Price et al., 2001). This
neuronal loss and injury can be indirectly measured through the ana-
lysis of structural magnetic resonance imaging (MRI) (Atiya et al.,
2003; Kantarci and Jack Jr, 2004). ERC atrophy as measured on
structural MRI scans has been associated with greater clinical disease
severity (Devanand et al., 2007; Kerchner et al., 2012; La Joie et al.,
2012; Miller et al., 2013) impairment on memory tests (Varon et al.,
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2011), and are predictive of progression from normal cognition to MCI
(Younes et al., 2014). In addition, numerous MRI studies have shown an
association of hippocampal atrophy associated with disease severity
(Csernansky et al., 2005; Devanand et al., 2007; Kerchner et al., 2012;
La Joie et al., 2012; Platero et al., 2018). In comparison, relatively few
MRI studies have distinguished the TEC from the ERC or have examined
the amygdala (Miller et al., 2015b; Miller et al., 2012). From the few
recent studies on transentorhinal atrophy, there is evidence of a cor-
relation between neurofibrillary tangle (NFT) burden measured from
PET and atrophy rate measured from MRI in the transentorhinal cortex,
as well as enhanced discrimination from healthy controls and early
stages of AD using transentorhinal atrophy (Wolk et al., 2017; Xie et al.,
2018a). In previous work (Tward et al., 2017b), we found significant
thickness and volume differences in the TEC of MCI subjects. In this
study, we have introduced a new, unbiased, low variance method for
estimating the thickness and curvature of the laminar neocortex based
on diffeomorphic flows. This has allowed us to further investigate the
differences in the local change of the volume measure by separating the
detection of baseline differences from differences in atrophy rate and
incorporating a protocol that provides measures of absolute thickness in
addition to changes in thickness. Furthermore, we examine four regions
of interest in this population to put our findings in context of the wealth
of studies performed on the hippocampus: the TEC, the ERC, the hip-
pocampus, and the amygdala.

The field of computational anatomy has worked to establish quan-
titative, robust structural imaging biomarkers for neurodegenerative
disease (Grenander and Miller, 1998). Evidence of neuronal loss in the
ERC and accumulation of pathology within the TEC motivate a local,
laminar study of this region. However, segmentation of the ERC and
TEC presents two technical hurdles. First, the proximity of the meninges
and oculomotor nerve make accurate automated segmentation of the
ERC difficult. Here we address this following a protocol to manually
segment and then automatically correct for undesirable longitudinal
variability in segmentation boundaries through a technique called
longitudinal diffeomorphometry (Tward et al., 2017b). The second
hurdle results from the difficulty in accurately and consistently mea-
suring distances across curved manifolds in the human cortex. We
utilize a method that maps the pial surface to the grey matter-white
matter boundary surface along a flow of diffeomorphisms constrained
to move in a direction normal to the surface (Ratnanather et al., 2018).
Here we assess local changes in cortical thickness over time and com-
pute the atrophy rate and spatial distribution of these changes in the
ERC and TEC separately. Different atrophy rates between groups were
identified using permutation testing and high field atlasing of the re-
gions of interest.

2. Methods

2.1. Data collection

Data was obtained from the ADNI database (adni.loni.usc.edu).
Subjects in this study were selected for having at least 3 time points
over 2 years with 3 T MRI scans, typically scanned at 6, 12, and
24months after baseline. Inclusion criteria for subjects with MCI in-
cluded evidence of impaired performance on the Logical Memory
Subtest of the Wechsler Memory Scale (based on age and education
adjusted norms) and a score of ≥0.5 on the clinical dementia rating
scale (CDR). MCI subjects were all selected to be amyloid β positive
based on cerebrospinal fluid cutoff values established by the ADNI
Biospecimen Core (i.e., less than a cutoff score of 192 pg/mL) and be-
tween 55 and 85 years old.

The criteria for control status in ADNI included evidence of per-
formance within the normal range on the Logical Memory Subtest of the
Wechsler Memory Scale (based on age and education adjusted norms), a
baseline score of CDR=0, and the absence of a diagnosis of MCI or
dementia. Control subjects were included only if they were amyloid β

negative (greater than a cutoff of 192 pg/mL). In total, 35 subjects with
MCI and 21 control subjects were selected. Their baseline demographics
are summarized in Table 1.

2.2. High field atlasing for coordinatizing the medial temporal lobe

To label structures of interest on the MRI images in this study, we
utilized a high field strength (11 T) MRI as depicted in Fig. 1. We used
partitions defined by Krimer et al. (Krimer et al., 1997) to guide the
boundaries for our measurements of the ERC. This Krimer partition, as
it is referred to through out this paper, divides the ERC into 9 sub-
regions. This framework was used to construct the lateral to medial
coordinates for the 9 subregions, using an established protocol (Insausti
et al., 1998; Krimer et al., 1997; Miller et al., 2015a). MRI studies of the
ERC typically define the lateral boundary of the ERC at the apex of the
gyrus (Devanand et al., 2007; Kerchner et al., 2012; La Joie et al., 2012;
Miller et al., 2013; Varon et al., 2011; Younes et al., 2014), whereas
histological studies typically extend past the apex (Gómez-Isla et al.,
1996; Kordower et al., 2001; Price et al., 2001). In this study, we define
the following 7 Krimer regions together as the ERC: (1) intermediate
superior, (2) intermediate rostral, (3) intermediate caudal, (4) pro-
rhinal, (5) medial rostral, (6) medial caudal, and (7) lateral. This de-
finition corresponds well to how the ERC is typically defined for most
MRI studies. We define the Krimer sulcal and transentorhinal regions
together as the TEC; these are the sections often not included in prior
MRI studies. We map the region from the subjects onto this atlas using
the LDDMM framework (Beg et al., 2005) to visualize and evaluate
subregional thickness. All thickness results in the ERC and TEC are
shown projected onto the high field atlas of Fig. 1 to localize in-
formation within the subregions.

2.3. Manual segmentation and surface-based morphometry

We followed an established procedure for segmentation and deli-
neation of the ERC and TEC (Tward et al., 2017b). Most subjects ex-
amined had a continuous collateral sulcus in the left hemisphere,
whereas a higher proportion had a discontinuous collateral sulcus in the
right hemisphere. Given the goals of the current analyses, we restricted
the analysis to the left hemisphere and excluded subjects with a dis-
continuity in the left collateral sulcus. Manual segmentations for 35
MCI subjects that met the criteria were completed in alphanumerical
order, with priority given to subjects with 4 scan times. ERC and TEC
were segmented manually by one expert (C.S.) and reviewed by another
expert (T.B.) using the Seg3D software (Center for Integrative
Biomedical Computing, 2016). For hippocampus and amygdala seg-
mentations, we processed the same subjects through an automated
segmentation pipeline called MRICloud (Mori et al., 2016) using a set of
26 adult atlases specifically for 50–90 year old adults. The atlases were
fused following a previously established label fusion algorithm (Wang
et al., 2013). Left hippocampus and left amygdala segmentations were

Table 1
Baseline demographic information for control and MCI groups with mean ±
standard deviation.

Parameter Control MCI P⁎⁎

Number 21 35
Age (years) 71.0 ± 5.42 71.0 ± 7.2 0.995
Sex (% female) 61.9% 57.1% 0.732
CDR-SB 0 ± 0 1.6 ± 0.76 < 0.0001
Mini-Mental State Examination 29.6 ± 0.5 27.1 ± 1.6 < 0.0001
WMS⁎ Logical Memory (Immediate) 15.2 ± 2.8 7.2 ± 3.5 < 0.0001
WMS Logical Memory (Delayed) 14.4 ± 2.7 3.1 ± 2.6 < 0.0001
Follow-up Period (years) 2.02 ± 0.07 1.75 ± 0.45 0.573

⁎Wechsler Memory Scale, ⁎⁎p-values of group comparisons using a two-sample t-
test.
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extracted and manually corrected by an expert (T.B.) using neuroana-
tomical boundaries previously described (Csernansky et al., 1998;
Miller et al., 2013; Munn et al., 2007). All regions were adjusted for
variability in segmentation boundaries over time by mapping a popu-
lation template simultaneously onto each scan of a time series as shown
in Fig. 1. The template surface is estimated as a triangulated mesh from
the population of controls and MCI subjects (Ma et al., 2008). Denote
this mesh representation as q(i)∈ℝ3, i=1, …, N, a collection of ver-
tices representing points in 3D-space with smoothly varying normals,
and we denote qkobserved as a subject's mesh at time tk, where k=1, …,
M indexes through scans of a subject. Each region's population template
was mapped onto each subjects time-series as follows. First, the tem-
plate was deformed to a subject-specific average mesh at an average
time t∗, not necessarily one of the observed scan times. Second, it was
deformed along a continuous geodesic trajectory (Miller et al., 2006),
both forwards and backwards in time, to closely match each of the
observed segmentations. The three parameters, consisting of the subject
specific map, the average time t∗, and the continuous trajectory, were
all estimated simultaneously by maximizing a penalized log-likelihood
(Tward and Miller, 2017a). Fig. 2 shows an example of volumes ob-
tained from manual segmentations of a subject and volumes obtained
after longitudinal diffeomorphometry.

The deformations are generated as a flow of diffeomorphisms
= ∘ϕ v ϕṫ t t . The vector field vt is generated to be smooth using a Gaussian

kernel K(⋅, ⋅) with a standard deviation of 5mm according to:

∑⋅ = ⋅ =
=

v K q i p i ϕ v ϕ( ) ( , ( )) ( ) , ̇ ( ) .t
i

N

t t t t t
1 (1)

Here, the Hamiltonian momentum pt and deforming surface vertices
q satisfies the Euler-Lagrange equations for initial conditions
q0= initialmesh:

=
= −

q v q
p Dv q p
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t t t

t t
T
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We motivate our method using an analogy to linear regression, “y
(t)= aΔt+ b”, where i) b represents a shift from the origin and ii) aΔt
represents a time-dependent shift from b. In our case, shifts are replaced
by geodesic flows of Eqs. (1) and (2), with resulting deformations
combined using composition ∘ rather than vector addition. We i) define
ϕp00 as the diffeomorphism generated with initial conditions q0 and p00,
which plays a role analogous to “b”. We ii) define ϕp01Δt as the diffeo-
morphism generated with initial conditions ϕp00(q0) and p01Δt, which
plays a role analogous to “aΔt”. In particular, our template is deformed
to match observed data at time tk according to ϕp01Δtk ∘ ϕp00(q0), where
Δtk= tk− t∗. We estimate the parameters p00, p01, and t∗ by minimizing
the cost:
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Fig. 1. Top row: Coronal views of the high-field atlas
from anterior (left) to posterior (right) in Mai co-
ordinates (Mai et al., 2007). Middle row: Segmenta-
tions superimposed on the high-field atlas views.
Bottom row: High-field 3D model of ERC, hippo-
campus, and amygdala. On the left is a coronal view
with the subject facing forward; middle is an axial
view from the inferior side with the subject facing
down; right is a sagittal view from the medial side
with the subject facing down. Krimer regions of ERC:
Transentorhinal cortex (TEC), Sulcal ERC (ERC S),
Intermediate Superior ERC (ERC Is), Intermediate
Rostral ERC (ERC Ir), Intermediate Caudal ERC (ERC
Ic), Prorhinal ERC (ERC Pr), Medial rostral ERC (ERC
Mr), Medial caudal ERC (ERC Mc), and Lateral ERC
(ERC L).
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We chose this specific form of cost function because it is the same as
used in population template estimation (Ma et al., 2010), with the
added constraint that each deformed surface lies along a single geodesic
trajectory. This type of procedure is often called geodesic regression
(Fletcher, 2013). The volume of a structure – amygdala, ERC, hippo-
campus – is calculated from the set of faces of the surface. To calculate
volume, let F be the number of faces where the f-th face is defined as a
set of three vertices {vf, 1,vf, 2,vf, 3} and vertex v∈ℝ3:

= ∑ × ⋅
=

v v vvol ( )
f

F

f f f
1

1
6 ,1 ,2 ,3 .

2.4. Cortical thickness of TEC and ERC

For estimating the cortical thickness of the ERC and TEC, we used
LDDMM to generate a normal geodesic flow of the pial surface to the
grey matter-white matter boundary surface. The ERC plus TEC surface
template calculated in the previous section is manually cut into two
surfaces: the pial surface and the grey matter-white matter boundary
surface. Specifically, the boundaries were defined using dynamic pro-
gramming to find the shortest geodesic path between user-defined
landmarks (Ratnanather et al., 2003). Landmarks were chosen to be the
points spaced along the inferior and superior sides of the surface at the
most lateral, medial, rostral and caudal extents. These two surface cuts
were then mapped to subjects using the diffeomorphic mapping de-
scribed in the previous section. One surface is then deformed to the
other surface within the constrained LDDMM framework (Arguillère
et al., 2015) with an additional imposed constraint that the surface
must flow in the direction normal to its current surface. For details on
implementation, please see (Ratnanather et al., 2018). Local cortical
thickness is then estimated as the distance a vertex travels along the
trajectory of this surface deformation as shown in Fig. 3. Due to
variability of measures along the boundary, we excluded distance
measures on vertices at boundary of surface cuts. A paired t-test was

performed on average TEC thickness versus average ERC thickness in
controls. A one-way ANCOVA were conducted on baseline TEC thick-
ness and baseline ERC thickness to determine statistically significant
differences between diagnostic groups while controlling for age and
sex. Finally, Spearman rank correlation tests were performed on TEC
thickness and ERC thickness stratified by CDR Sum of Boxes (CDR-SB)
and results were corrected for multiple comparisons using a Bonferroni
correction.

2.5. Mixed effects modeling

The log-linear mixed effects model under the null hypothesis can be
written as Eq. (5) and Eq. (6) for thickness and volume, respectively.

Fig. 2. Geodesic longitudinal diffeomorphometry matching the template (cyan) onto the set of surfaces (red) and depicting the deformed smooth surfaces (blue).
Volumetric fits using longitudinal diffeomorphometry (blue) on manual segmentations (red) for the ERC plus TEC (left), hippocampus (middle), and amygdala (right)
are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Generation of normal coordinates via the pial surface (colored) as it is
deformed to the grey matter-white matter boundary surface (grey) along the
normal constraints. The vertex paths are shown in white. The geodesic distance
defining the cortical thickness measured at each surface vertex is calculated
along the normal geodesic flow shown in color on pial surface.
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= + + + + +=μ δ t α β e εlog(thk ) Δ Age isFemalei j k k k j k i j k i i k i j k, , , 1 , , , (5)

= + + + + + += =μ δ t α β γ e εlog(vol ) Δ Age isFemale ICVi j j i j i i j i i j, , 1 , 1 ,

(6)

with subject i, scan j, and vertex k. The constants μ, δ, α, β, γ and the
variance of ei, k are estimated by maximum likelihood. The variable ei, k
is the subject-specific random effect from a 0-mean Gaussian distribu-
tion, which explains correlations between measurements of the same
subject over time. Including between-subject variability as a random
effect allows us to separate cross-sectional variability (subject-specific
differences from the population average, independent of time) from
longitudinal effects. The variables εi, j, k is independent identically
distributed Gaussian noise, isFemalei is a binary variable indicating sex
of subject i, ICV is the intracranial volume, and Δtj is the change in time
since a subject's baseline scan. Age, sex, and intracranial volume were
treated as fixed effects.

We first test whether a model including diagnostic groups to mod-
ulate cross-sectional differences and differences in atrophy rate fit the
data significantly better than the model under the null hypothesis. The
model under the alternate hypothesis can be written as Eq. (7) and Eq.
(8) for thickness and volume, respectively.

= + ′ + + ′
+ + + +=

μ μ δ t δ t
α β e ε

log(thk ) isMCI Δ isMCI Δ
Age isFemale

i j k k i k k j i k j

k i j k i i k i j k

, ,

, 1 , , , (7)

= + ′ + + ′
+ + + + += =

μ μ δ t δ t
α β γ e ε

log(vol ) isMCI Δ isMCI Δ
Age isFemale ICV

i j i j i j

i j i i j i i j

,

, 1 , 1 ,

(8)

where isMCIi is a binary variable indicating diagnostic group of subject
i. We use a likelihood ratio test statistic and permutation testing on the
residuals with 10,000 permutations and correct for multiple compar-
isons using the maximum test statistic to control familywise error rate
at 5% as shown (Nichols and Hayasaka, 2003).

We then visualized diagnostic group-dependent effects on thickness
and volume under the alternate hypothesis as shown in Eq. (9) and Eq.
(10) for average thickness over vertices and volume, respectively.

= + ′ + + ′ +μ μ δ t δ t αthk mean (exp( isMCI Δ isMCI Δ Age))i j k k k i k j k i j k,

(9)

= + ′ + + ′ + +μ μ δ t δ t α γvol exp( isMCI Δ isMCI Δ Age ICV)i j i j i j,

(10)

where the bar indicates average baseline value over all subjects.
If the alternate model proved to be a significantly better fit for the

data than the null model, we follow up with two hypothesis tests. First,
we determine whether there were significant cross-sectional diagnostic
group differences at baseline and how much they differ by testing the
alternate model in Eq. (7) and Eq. (8) against a new null hypothesis,
setting μ′=0 in Eq. (7) and Eq. (8). Next, we determined whether there
were significant diagnostic group differences in atrophy rate and how
much they differ by testing the alternate model in Eq. (7) and Eq. (8)

against another null hypothesis, setting δ′=0 in Eq. (7) and Eq. (8). We
then correct for testing these two hypotheses with a Bonferroni cor-
rection. Note that the value δ+ δ′ isMCI is related to annual atrophy
rate percentage by the following equation:

= − + ′δ δAtrophyrate 100(1 exp( isMCI)) (11)

For small values this can be approximated as:

≈ − + ′δ δAtrophyrate 100( isMCI)) (12)

2.6. Comparison of diagnostic accuracy using imaging measures

A comparison of the accuracy with which the two groups could be
distinguished from one another based on measures from baseline and
the linear rate of change was evaluated for the following measures: (1)
TEC thickness, (2) ERC thickness, (3) ERC thickness plus TEC thickness,
(4) ERC volume plus TEC volume, (5) hippocampal volume, (6)
amygdalar volume. Linear discriminant analysis was also conducted in
which all the available measures (e.g., thickness measures and volume
measures) were combined to determine which measures provided
complementary information in classification. Leave-one-out linear dis-
criminant analysis was performed on all combinations of N− 1 subjects
as training data to classify the remaining 1 subject into a diagnostic
group. Sensitivity and specificity were calculated as the rate of true
positives and true negatives, respectively, over all the combinations.

3. Results

3.1. Cross-sectional differences of cortical thickness and volume

Cortical thickness and volume stratified by scan time are found in
Table 2 and Table 3, respectively. Results show that the cortical
thickness is not uniform across the ERC and TEC in controls. The his-
togram of cortical thickness measured at each vertex stratified by ERC
and TEC shows that the control population has a markedly thicker TEC
than the ERC (Fig. 4). A paired t-test on baseline average TEC thickness
versus average ERC thickness in control subjects rejected the null hy-
pothesis with p≪ 0.0001, showing that at baseline, control participants
had a significantly larger average TEC thickness compared to average
ERC thickness. Fig. 5 shows the average TEC and ERC thickness of the
control group and the MCI group. Note that after excluding vertices on
the surface boundary and mapping to the 11 T high-field atlas, there are
regions with no cortical thickness data (indicated in white in Fig. 5).

One-way ANCOVA showed there was a significant difference in
baseline TEC thickness in subjects with MCI compared to controls
(p≪ 0.0001, F= − 5.611), whereas no diagnostic difference was de-
tected in baseline ERC thickness (p=0.85, F=0.187). CDR-SB was
used to approximate the distribution of disease severity (Fig. 6). To
assess the potential clinical relevance of these findings, we examine the
relationship between baseline thickness measures and the CDR-SB. The
Spearman rank correlation test indicated a significant correlation be-
tween TEC thickness and CDR-SB (p≪ 0.0001) with a correlation

Table 2
Cortical thickness by scan time (Mean ± standard deviation in mm, mean difference from baseline in parenthesis).

Region Diagnosis 0 Scan time (months) 24

6 12 18

TEC Control 2.96 ± 0.32 2.95 ± 0.32 2.93 ± 0.33 2.90 ± 0.34
(−0.0189) (−0.0364) (−0.0668)

MCI 2.47 ± 0.28 2.42 ± 0.27 2.38 ± 0.27 2.45 ± 0.05 2.24 ± 0.23
(−0.0463) (−0.0896) (−0.1041) (−0.1761)

ERC Control 2.43 ± 0.16 2.42 ± 0.17 2.40 ± 0.18 2.37 ± 0.22
(−0.0165) (−0.0322) (−0.0603)

MCI 2.46 ± 0.27 2.42 ± 0.26 2.38 ± 0.25 2.33 ± 0.34 2.28 ± 0.26
(−0.0426) (−0.0826) (−0.0428) (−0.1642)
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coefficient of ρ= − 0.6187. For ERC thickness, the Spearman rank
correlation test did not indicate any significant correlation
(p=0.1818).

3.2. Cross-sectional and longitudinal differences based on mixed effects
models

3.2.1. Cortical thickness
We rejected the null hypothesis in Eq. (5) with global p < 0.0001

and concluded that the alternate model with diagnostic group in-
formation fits the data significantly better. Fig. 7 shows average cortical
thickness of the TEC and a visualization of group dependent effects
using Eq. (9). We rejected the null hypothesis in both follow up tests
and concluded there are significant cross-sectional differences at base-
line with global p < 0.0002 and significant differences in atrophy rate
with global p=0.0044. Significant group differences are visualized in
Fig. 8. MCI baseline cortical thickness was as much as 20.44% sig-
nificantly thinner than control group's baseline cortical thickness in the
TEC. Results also indicated an up to 12.60% significantly thicker MCI
cortex in portions of the intermediate rostral and caudal ERC. Sig-
nificant difference in atrophy rates of cortical thickness is shown in
Fig. 8. Note that additional atrophy rate seen in MCI subjects was as
high as 3.57% more than control atrophy rate, with the differences
localized to the TEC.

3.2.2. Volume
In the analysis of volumes of the combined ERC plus TEC region, we

rejected the null hypothesis with p=0.0014 and concluded that the
alternate model with diagnostic group information fits the data sig-
nificantly better. We also rejected the null hypothesis in both follow up
tests and concluded that we can detect significant cross-sectional dif-
ferences at baseline with p=0.0020 and significant differences in

atrophy rate with p=0.0112. Specifically, MCI subjects had 22.70%
smaller ERC and TEC volume than controls at baseline, and while
controls experienced atrophy at a rate of 1.45% per year, MCI subjects
experienced an additional 4.67% per year. Fig. 9 visualizes ERC plus
TEC volume and the group dependent effects under the alternate model
from Eq. (8).

In the analysis of hippocampal volumes, we failed to reject the null
hypothesis, but see a strong trend with p=0.0503. Under the alternate
hypothesis, MCI subjects were 8.72% smaller than controls at baseline
and experienced an additional 0.71% per year atrophy compared to
controls (0.92% per year). Fig. 10 visualizes hippocampal volume and
group dependent effects under the alternate model.

In the analysis of amygdalar volumes, we rejected the null hy-
pothesis with p=0.0004 and concluded that the alternate model fits
significantly better. We rejected the null hypothesis for the first follow

Table 3
Volume by scan time (Mean ± standard deviation in mm3, mean difference from baseline in parenthesis).

Region Diagnosis 0 Scan time (months) 24

6 12 18

ERC+TEC Control 1093 ± 266 1087 ± 271 1080 ± 277 1066 ± 290
(−6.45) (−13.2427) (−27.5562)

MCI 860 ± 230 832 ± 219 803 ± 211 790 ± 165 736 ± 196
(−28.5095) (−57.8032) (6.1131) (−90.3126)

Hippocampus Control 2935 ± 412 2924 ± 409 2911 ± 408 2891 ± 417
(−11.3376) (−24.0392) (−47.5090)

MCI 2705 ± 438 2692 ± 430 2673 ± 426 2692 ± 520 2586 ± 407
(−13.1303) (−32.0696) (23.8482) (−83.3799)

Amygdala Control 1409 ± 212 1412 ± 217 1408 ± 220 1378 ± 225
(2.9082) (−1.7) (−31.6153)

MCI 1194 ± 192 1187 ± 194 1171 ± 195 1169 ± 220 1103 ± 181
(−7.4868) (−22.5044) (−8.6961) (−75.3710)

Fig. 4. An inferior view of ERC overlayed with Krimer partitions. A histogram of cortical thickness in control subjects for TEC (Krimer's sulcal and transentorhinal
partitions) and other ERC partitions including LS, LR, LC, PR, MR, MC.

Fig. 5. Control and MCI disribution of ERC plus TEC cortical thickness at
baseline. Areas in white have no cortical thickness data.
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up test with p < 0.0002 and concluded MCI subjects show 17.32%
smaller amygdalar volumes than controls at baseline. However, we
failed to rigorously reject the null hypothesis for the second follow up
test with p=0.0886 and concluded we cannot detect significant dif-
ferences in atrophy rate by diagnostic group. Under the alternate
model, MCI subjects experienced an additional 2.02% per year atrophy
compared to controls (1.64% per year). Fig. 10 visualizes amygdalar
volume and group dependent effects under the alternate model
(Table 4).

3.3. Differentiating groups using linear discriminant analysis

The results of linear discriminant analysis on the baseline value and
atrophy rate of the various thickness and volume metrics are shown in
Table 5. TEC thickness showed higher sensitivity and higher specificity
in discriminating controls from MCI than the other MRI measures, in-
cluding: ERC thickness, ERC plus TEC thickness and volume, hippo-
campal volume, and amygdalar volume. The results of the linear dis-
criminant function analysis, in which all of the available measures were
combined showed that the ERC thickness and TEC thickness together
improved specificity of diagnosis beyond TEC thickness alone. Addition
of volume measures did not improve specificity or accuracy.

4. Discussion

The primary finding in this study is that the TEC demonstrates more
striking changes in thickness compared with the ERC during the MCI
phase of AD. Results showed significant differences in TEC thickness
between MCI subjects and controls cross-sectionally whereas the ERC
thickness was not significantly different between the groups.
Additionally, the atrophy rate of the TEC over 2 years was significantly
greater in MCI subjects compared to controls. For example, the atrophy

rate in the TEC of the MCI group was approximately 3.5 times greater
than controls, whereas the atrophy rate of the ERC was considerably
smaller.

The volumetric measure for the region that combined the TEC and
the ERC together were also different cross-sectionally between MCI
subjects and controls. The volume of the amygdala was also sig-
nificantly different between these groups.

Discriminant function analysis was also performed to determine
which of the thickness and volumetric measures described above best
differentiated MCI subjects from controls. The TEC thickness had the
largest sensitivity and specificity than any of the other regions (0.89
and 0.81, respectively). The clinical relevance of these MRI findings
was reflected by examining the relationship between the TEC and the
CDR-SB. There was a significant correlation between the CDR-SB and
TEC thickness in the MCI subjects, but there was no significant corre-
lation between the CDR-SB and ERC thickness.

Taken together, these findings demonstrate that the TEC thickness
appears to be differentially affected during the early phase of AD.

Fig. 6. Average thickness over the TEC and ERC stratified by baseline CDR Sum of Boxes score over time. In blue are controls, in red are MCI. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Average TEC thickness over time with controls in blue, MCI in red. Shown is the thickness and the group dependent effects under the alternate hypothesis.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Thickness differences cross-sectionally, and thickness differences in
atrophy rate from control to MCI over ERC and TEC.
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Cortical thickness atrophy in the TEC corresponds well with the loca-
lization of early neurofibrillary tangle accumulation previously re-
ported (Braak and Braak, 1991). This study adds to the growing evi-
dence that the thickness of the TEC could function as a biomarker for
early AD. The subjects selected for this analysis were specifically chosen
with strict criteria for MCI due to AD in order to reduce the confounding
effects of MCI due to other conditions. Given the marked difference in
cross-sectional analysis of the TEC, ERC, and amygdala, one future di-
rection is to implement this analysis on a population of subjects earlier
in the disease course as well as cognitively normal older adults fol-
lowing previous findings in the TEC in this population (Maass et al.,
2018). Another future direction is to implement this analysis on a larger
population of subjects to determine whether significant longitudinal
diagnostic differences can be detected for amygdalar volume and hip-
pocampal volume. A larger sample size may also show hippocampal
volume differences between the groups. While the volume of the hip-
pocampus did not differ between diagnostic groups in the present study,
the estimated volume of the hippocampus is similar to previous reports
(Chao et al., 2005; Csernansky et al., 2005; Du et al., 2001; Müller et al.,
2005). For example, in this study the hippocampal volume for MCI

subjects was 248 mm3 smaller than controls on the left hippocampus
while in another study the hippocampus was 240 mm3 smaller than
controls in the left hippocampus (Csernansky et al., 2005).

This study has a number of strengths. This includes: the careful
selection of subjects in order to maximize the likelihood that any dif-
ferences observed were the result of underlying AD pathology and the
use of 11 T MRI to place coordinates on the images.

The study also has some limitations. Measures of cortical thickness
along the boundaries of the ERC were excluded due to inaccuracy of
trajectories. Extension of surface laterally into the perirhinal cortex may
yield a more complete understanding of changes in the thickness profile
of this region. The analysis was restricted to subjects with a continuous
collateral sulcus in the left hemisphere. Restriction to the left hemi-
sphere was based on previous findings showing that functional and
structural changes in MCI were primarily observed in the left medial
temporal lobe (Bakker et al., 2015; Bakker et al., 2012; Yassa et al.,
2010). This may be due to a functional specialization of left medial
temporal lobe structures relevant to the behavioral impairments ob-
served in subjects with MCI (El-Gaby et al., 2015). In the future, this
work could be extended to other well-characterized variants of the

Fig. 9. ERC with TEC volume over time with controls in blue, MCI in red. Shown is the volume and the group dependent effects on volume under the alternate
hypothesis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Hippocampal and amygdalar volume over time with controls in blue, MCI in red. Shown is the volume and the group dependent effects on volume under the
alternate hypothesis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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collateral sulcus (Ding and Van Hoesen, 2010) using a multi-atlas ap-
proach (Xie et al., 2018b). Without histology as a gold standard, the
accuracy of Krimer region placement on longitudinal data cannot be
validated. Using mappings to the high field atlas is our best available
alternative, and has been used in other studies (Mahon et al., 2015;
Miller et al., 2015a; Miller et al., 2015b; Yushkevich et al., 2009). While
it remains unclear whether these regional differences could be observed
without the use of 11 T MRI to improve accuracy of coordinate place-
ment, the distribution of thickness differences in Fig. 8 can still be
considered valid independent of the Krimer partition labels. The current
study provides evidence that changes in the TEC thickness provide a
sensitive measure of disease progression associated with functional
decline in the MCI phase of AD, providing a potential outcome measure
of disease modification in clinical trials for AD.
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